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ABSTRACT 

The Rayleigh-Taylor instability response of elastic-plastic solids can be modeled 

by approximate means. However, neither the linear elastic response equation nor the 

so-called "minimum amplitude" instability criterion derived from rigid plastic analyses 
is sufficient to describe overall stability characteristics at very large driving pressures. 
We compare several versions of the modal or one-degree-of-freedom approximation 
technique and indicate the common features which must be included to obtain the 

qualitative response seen in numerical experiments. 
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Nomenclature 

C - (•-*" 

<7 - Equivalent body force acceleration 
h - Nominal plate thickness 

k - Spanwise perturbation wavenumber 

n - Perturbaton growth rate 

p - Pressure 

po - Driving pressure on plate 

pm 
- Maximum value of po 

q - Maximum perturbation amplitude of interface rii 
s - Deviatoric stress variable (scalar) 

61 - von-Mises yield stress in pure shear 

5* - Limiting value of s 

s(n) - Boundary traction vector 
t - time 

txxityy,t^,tsy 
- Non-zero components of Cauchy stress tensor, T 

v - Assumed velocity field = (vz,Vy) = (qe'^ s'mkx^e'1"' coskx) 
x - S-M/(2si) 
G - Elastic shear modulus 
Y - von-Mises yield stress in uniaxial tension 

Yh - Value of Y on free surface h 

W - Stress power = S • D 

a - dYfdp 
/? - Coefficient of S in Prandtl-Reuss relation 

7 - 1-e-2^ 
r],rio,ri - 2Gkq/Si,2Gkq{0)/si,rf - r?o (respectively) 

771,772 - Driven face and free face interfaces, respectively. 
A - Spanwise perturbation wavelength 

p. - Newtonian viscosity 

v - Newtonian kinematic viscosity 

p - Density 
D - Rate of strain tensor = (yv + V"^)/^ 
M - D/qk for v defined above 

M-M - 2c2 

S - Deviatoric stress tensor with components 5;j 
T - Cauchy stress tensor 

in 



1. Introduction 

When a high density material is accelerated by a low density material in the direc¬ 

tion of the positive density gradient, a classical Rayleigh-Taylor instability may develop 

along the interface between the two materials. The problem has been studied for some 

time in the case of fluids and the literature is voluminous (Sharp, 1984). We wish to 

study aspects of this instability behavior when the high density material is an elastic- 

plastic solid pushed by a low density gas. We are interested principally in the regime 

where the driving pressure of the gas is much greater than the yield strength of the 

solid and wish to investigate how the properties of elasticity and plasticity for the solid 

plate may assist in delaying or suppressing the onset and growth of unstable modes. 

Miles (1966) provided analytical estimates of the effect of solid properties on the 

growth of Rayleigh-Taylor instabilities. Using an energy integral argument and employ¬ 

ing the inviscid fluid Rayleigh-Taylor eigenfunctions as basis functions for the velocity 

field, he determined two types of stability equations for two different regimes in the 

solid response of an incompressible elastic-plastic plate. The plate was assumed to be 

of thickness, h, with elastic shear modulus, G, and von-Mises yield stress in pure shear, 

61, which is related to the yield stress in unaxlal tension, Y, by Y = si\/3 (see Figure 

1). A simple pressure boundary condition, po» was applied on the lower surface of the 

plate. He examined two limiting cases. The first case was for infinitesimal perturba¬ 

tions about an assumed anisotropic state of stress in the plate given by the deviatoric 

stress components s.j = (<5,, — 36^6jt)si/\/3. Thus 6ij5,j = 2s^ so that the stress state 

was assumed to lie on the yield surface. For perturbation amplitudes much smaller 

than hsi/po. Miles obtained, using the Prandtl-Reuss constitutive law, a perturbation 
amplitude equation of the form 

9-(^-^GA:2)<7=0 (1) 
4 p 

where q measures the amplitude of the perturbation, the dot indicates a time derivative, 

g is the equivalent body force acting on the plate, k is the wavenumber of the spanwise 

perturbation and p is the density. Since po = Pffh-, this implies that there exists a 

wavelength of maximum growth rate, Am, given by Xmfh = ISxG/po. Thus, if the 

driving pressures are on the order of the shear modulus, the wavelength of maximum 
growth rate is roughly an order of magnitude larger than the thickness of the plate, 
A cutoff wavelength which is exactly half of the most unstable wavelength is also 

predicted. All wavelengths smaller than this cutoff wavelength would be predicted to 

be stable. For many metals this would imply that, unless the pressures driving the plate 

are on the order of 100 GPa or more, the Rayleigh-Taylor response can be neglected 



as far as plate integrity is concerned provided initial perturbations are small. In order 
to provide an estimate for larger amplitudes, Miles assumed the Levy-Mises rule for 

plastic flow and using the same modal technique determined an equation of the form 

, 4A;5i 
. 

^^•pCl+e-^5^ 
(2) 

where sgn q indicates the sign of q. If one scales time on the instability growth rate for 
a perfect fluid, r = ^/gkt, and the perturbation amplitude by h, then if we define /(r) 
by q/h = 6f(r), where 6 = 4(1 + e~t'l)-15l/po, one obtains 

/"(r)-/(r)=-sgn/'(r) (3) 

or, in integrated form, 

/'2 - (/- sgn/')^/i2 - (/o - sgn/^)2 
. (4) 

The level curves of Equation 4 (»'.e., the trajectories of Equation 3) are shown in Figure 

2. For regions near the origin in the phase plane the motion is stable in the sense that 

the flow lines do not go to infinity for any values of the initial state. However, for large 

enough values of either /(r) or /'(r) the motion may follow an unstable trajectory. In 

particular, if one assumes q = 0 at the beginning of the motion one concludes that any 
initial | q \> f>h ([ / |> 1) will lead to an unstable motion while any q less than this 

cutoff value will be stable. Thus the parameter, 6, measures the minimum amplitude of 

an initial perturbation (in plate thickness units) which must be present for instability 

and has a magnitude of the order of the yield strength divided by the driving pressure. 

The scaling employed above and the small amplitude assumptions inherent in the modal 

analysis technique imply that we are examining the regime where q/h ~ f> <: 1. Miles' 

analysis is the first known discussion of a minimum amplitude criterion for instability 

given an assumption of rigid-plastic material behavior. 

White (1973), in an informal report, discussed a unified analytical technique which 

included both the elastic and plastic response behavior seen in Miles' equations. White 

assumed that the whole flow was on the yield surface throughout the motion. Thus no 

explicit time or spatial dependence of the elastic or plastic effects could be included. 

White's work represents the first attempt to combine elastic and plastic response char¬ 

acteristics in a single analysis. In other words the analysis aimed at presenting a 

unified theory which would be valid in the regime q/h •€ 6 and would go over to the 

rigid-plastic analysis for q/h ~ 6. This work will be described later. 



Barnes, et al. (1974) conducted an experimental study in which aluminum plates 

were accelerated by explosive gases expanding across a void. They found significant 

growth for perturbation wavelengths twice the thickness of the plate at a given initial 

amplitude. A single additional shot (Shot 2) at half the wavelength and half the 

amplitude resulted in significantly less growth. The result was ascribed to a wavelength 

effect with the growth of the shorter wavelength perturbation being damped much more 

by the yield strength of the solid just as in the case of viscosity in a fluid. Numerical 

calculations modeling these experiments indicated a significant dependence on yield 

strength. 

Dienes (1978), using a fully nonlinear modal technique, determined an equation 

of motion for a, rigid-plastic fluid and found that there was a minimum acceleration 

required for instability. His equations in the small amplitude regime are exactly the 

equations of Miles in the limit h —>• oo. Qualitatively, the response was found to be the 

same for both linear and nonlinear modeling. 

Drucker (1980) also obtained an equation similar to Equation 3 for /' positive. His 

analysis results in a 6 which does not depend on the wavelength but does depend on 

the shape of the perturbation. The analysis does not reduce to the fluid limit as the 

yield strength goes to zero. Drucker (1980) also produced an additional paper detailing 

various non-dimensional parameters of interest in the study of Rayleigh-Taylor insta¬ 

bility in solids. 

Due to the suggestion by Drucker that the initial amplitude rather than the wave¬ 

length was the dominant factor in the no growth result for Shot 2, Barnes, et al. (1980) 

conducted two additional shots. The first shot essentially verified the previous result 

of Shot 2, and the second shot had an initial perturbation wavelength 1.86 times that 
of Shot 2 but at the same small amplitude. In this case, little growth was observed. 

It was concluded that the minimum amplitude criterion emphasized by Drucker was 

apparently correct. 

Swegle (1987) has described the results of a set of numerical experiments conducted 

using a Lagrangian finite-difference wavecode to compute the time-dependent motion 
of elastic-plastic plates loaded by a given pressure history on an initially perturbed 

surface. With the exception of White's analysis all of the approximate theories dis¬ 

cussed above are incomplete in the sense that many of the qualitative features seen in 

the numerical experiments cannot be reproduced. Below we shall extend and discuss 

White's analysis and review a second technique which was proposed earlier (Robinson 

and Swegle, 1987). This approach, which is distinct from White's theory, yields a cou¬ 

pled set of equations combining both elastic and plastic effects. A final approach is then 

introduced which unites various aspects of the above elastic-plastic analyses and yields 
a fairly simple self-consistent equation of motion. The result is strictly self-consistent 

only in the unstable regime in the wavelength-initial amplitude plane. The three differ- 



ent combined elastic-plastic analyses are all able to reproduce the qualitative features 

of the calculated solid plate response, although each approach suffers from some form of 

inconsistency. A major inadequacy of all the models is that, while qualitative features 

of the response are very favorable, the quantitative details differ significantly from the 

numerical plate acceleration studies. This is perhaps to be expected due to the simplic¬ 

ity of the assumed velocity field and the constitutive assumptions. The incompressible 

models are clearly incapable of providing insight into the phenomena which are due 

primarily to time dependent wave propagation. The models do provide, however, the 

best known approximate techniques for understanding the Rayleigh-Taylor response of 

solids. 



2. The Modal Technique and the Constitutive Equa¬ 
tions 

We employ a one-degree-of-freedom approximation technique in that we assume 

that the kinematics of the flow follows the incompressible irrotational motion corre¬ 

sponding to the linearized stability problem for an inviscid fluid with the maximum 
strain amplitude, g, as the unknown. Thus, the velocity field is given by v = (v^^Vy} 

where Vs = qe"^ sin kx and Vy == qe'^coskx. We assume for simplicity that the den¬ 

sity of the driving fluid is negligible, although the modal technique to be described 

can also be implemented in the case of a non-zero density driving fluid (Robinson and 

Swegle, 1987). 

The Cauchy stress tensor for plane incompressible motion is of the form 

T = -pi + S (5) 

where S is the deviatoric part of the stress, i.e. S • I = 0. Since we allow only in-plane 

motions the components t^z ^d tys of T are zero by symmetry. Out-of-plane strains and 

strain rates are zero as well. In addition, the incompressibility assumption for any of 

the constitutive relations which we consider will imply that the out-of-plane deviatoric 

stress component is zero. Thus the out-of-plane stress t^ = —p = {t^+tyy)/2. See Hill 

(1950, p. 129) for a discussion in the case of a rigid-plastic material or an elastic-plastic 

material with Poisson's ratio = 1/2. The rate-of-strain tensor, D, is defined by 

D = (Vv + Vv7)^ . 
(6) 

Incompressibility implies that T • D = S • D. 

An equation for <] is needed and is obtained from an energy balance or power 

expended theorem (Gurtin, 1981, p. 110) of the form 

I s(n) • v dA + f (b - pv) • v dV = f T • D dV (7) 
Jgyt Jv< Jv 

where s(n) is the boundary traction vector and the equivalent body force is given by 
b = —pgy where y is the unit vector in the y direction. The equivalent body force 

balances the boundary pressure terms so that in our frame of reference there is no 

zeroeth order motion. The volume V* depends on time. Since we restrict ourselves to 

plane motions, the volume integration is over an area and the surface integral becomes 



a corresponding line integral. The lower and upper surface variations, rji(x,t) and ^(a:,^), 
respectively, of the plate must satisfy the kinematic conditions 

QTJI 9rji 

aT+^a" ^"v on y=^2l+m for ^=1,2. (8) 

The motion is assumed to be periodic in x of wavelength A and wavenumber 
k == 27T/A with an imposed zero stress boundary condition on the upper surface and 

an imposed constant pressure on the lower surface. The volume V is taken over one 

wavelength. One can then show, using the periodicity condition and the kinematic 

boundary conditions, that the boundary traction term in Equation 7 is zero. Evaluat¬ 

ing the remaining term on the left hand side of Equation 7 to quantities of 0(<?2) in 

the amplitude yields 

-^,e-2kh){<J-g^)=^S.-DdV. (9) 

The one-degree-of-freedom modal approximation technique reduces simply to an eval¬ 

uation of the right hand side of Equation 9, the stress power integral, given various 

assumptions about the deviatoric stress dependence on the kinematics. We now review 

various forms for this dependence. For an incompressible Newtonian fluid we have 

S=2^D (10) 

where fz is the viscosity. The Levy-Mises flow rule with the von-Mises yield criterion 

(rigid-plastic) has the form 

S = v/2,siD/\/D • D (11) 

where Si is the von-Mises yield strength in pure shear. For an elastic-plastic incom¬ 

pressible material, we shall assume a Prandtl-Reuss flow rule and von-Mises yield stress 

criterion of the form 

S+/?S=2GD (12) 

where G is the elastic shear modulus and 

GW 
f3 = —— provided Jz = 252 and W > 0 

^ y.^,^^ »i -^ 

6 

(13) 



or 

/3 = 0 provided Jz < 2s2 or W < 0 (14) 

where ^ = S D and Jy, = S • S. See Hill (1950, 11.5 and III.2) for a discussion of 

plastic flow rules. For convenience, we define the tensor M by 

M = D/(qk] (15) 

so that 

M • M = 2e-2*I/ = 2c2 
. 

(16) 

In the inviscid fluid case, S = 0, evaluation of Equation 9 yields a linear ordinary 
differential equation for q which has the same characteristic values as the eigenvalues 

corresponding to the inviscid fluid Rayleigh-Taylor eigenfunction. In the case of a non- 

perfect fluid one must satisfy no-slip velocity and stress balance boundary conditions 

across an interface between two fluids. Since the inviscid fluid eigenfunction does not 

satisfy the correct boundary conditions, this leads to an inaccurate approximation 
for those modes for which the shear stress contribution is important. However, the 

qualitative features of the response may still be preserved using the modal technique. 

This will be illustrated in the cases of an incompressible Newtonian viscous fluid and an 

incompressible elastic solid where the exact linear stability analyses can be completed 

in closed form. 

2.1 Application to a Newtonian Fluid and an Elastic Solid 

Layer 

We can compare the above approximation technique to the exact solution when the 

plate is an incompressible Newtonian fluid or elastic solid layer of infinite extent. In 
the Newtonian fluid case, Equation 10 holds, and we have S -D = 2/ifc2g2M2. Equation 
9 simplifies to 

q - gkq = -Ai/k^q (17) 

where v = p./?. Assuming a solution proportional to e"' we obtain the characteristic 

equation 

7 



n 
2 

- gk = -41^'n . 
(18) 

This may be compared with the characteristic equation for n derived from the general 

two-fluid dispersion relation for kh -+• oo given by Chandrasekar (1961) (taken in the 

limit of zero density and viscosity in the lower fluid) 

n2 - gk = -^n + 4AV(^/lTnA2^ - 1) 
• 

(19) 

The last term on the right hand side of Equation 20 can be considered the contribution 

to the characteristic equation due to the need to satisfy velocity and stress continuity 

boundary conditions at the interface. One expects the approximate solution to be 

correct in the long wavelength limit, but wrong in the short wavelength limit since in 

the latter case viscosity effects should be more important. Taking leading order terms in 

a small k expansion of Equation 20 results in Equation 19, the same equation obtained 

by the modal technique. The comparison of the inviscid fluid eigenfunction modal 

technique versus the complete Newtonian fluid solution problem was first made by Miles 

and Dienes (1966). They determined the maximum growth rate to be 0.40(<72/^)' for 

the approximate analysis and 0.46{g2/l/)l• for the exact analysis. Figure 3 illustrates 

the growth rate curves as a function of wavenumber for the exact solution and for 

the approximations discussed above. Both the magnitude of the growth rate and the 

wavenumber of maximum growth rate are displaced from the exact values. The example 

indicates that the inviscid fluid eigenfunction approximation technique can perform 
quantitatively well in the long wavelength limit, but may provide qualitatively correct 

results over the full wavelength range. 

A similar analysis can be easily obtained for the case of a perfectly elastic in¬ 

compressible fluid. Recall that we assume a factor e"' for the time dependence of all 

quantities. Thus, examining Equation 12 with (3=0 leads to a correspondence between 

G/n and the p, of the Newtonian analysis. The dispersion relation in the elastic case 

will be obtained by replacing p, in Equation 19 by G/n. One obtains the exact relation 

n2 - gk = -4{G/p)k2 + 4k4{G/(pn})2^1 + ^/(TO) - 1) . (20) 

The long wavelength limit of this equation and the modal technique both yield 

n2 = gk - 4Gfe2/p 
. 

(21) 

See Figure 4. The scaling on the plot emphasizes the weaknesses of the long wavelength 

approximation due to the fact that the cutoff wavelength is not correctly predicted. 



However, the comparison does indicate that replacing the constant G in the long wave¬ 

length analysis by one half its nominal value may provide the best agreement with a 

more accurate analysis in so far as the cutoff wavelength and wavelength of maximum 

growth rate are concerned. This would, however, increase the maximum growth rate 

by a factor of two. 

2.2 Rigid-Plastic Equations 

As an extended case of the rigid-plastic model equations represented by Equation 

2, it is instructive to determine the modal stability equation for the case of a yield 

strength which depends upon pressure. We assume that the yield strength Y varies 

linearly across the plate with the pressure. Thus for constant dY/dp = a we obtain 

Y=Yh+apo(h-y}/h (23) 

where Yh. is the nominal yield strength of the unloaded material on the back surface 

of the plate. The analysis follows as usual by evaluating Equation 9 with S given by 

Equation 11. The important detail is that S -D has a more complicated dependence on 

y, and the stress power integration takes this into account. Recalling that si = Y/\/3, 
one obtains 

'-^-^^{^-(l^-n)}- ^ 

This is exactly Equation 2 except for an additional dependence of the right hand side 

on kh which represents an additional contribution for dY/dp non-zero. It is easy to 

show that the following inequalities hold for all apo > 0 and kh > 0: 

Yh < ^+apoL^ - ^} ̂  Y^+apo . 
(25) 

The term in braces takes on a value of .5 at kh = 0 and approaches 1.0 monotonically 

as kh increases. Thus one finds, as expected, that the stabilizing effect of the linearly 

varying yield strength is bounded by that seen if the whole plate were composed of 

a material characterized by the least and the maximum yield strength of the linearly 

varying plate. This is consistent with numerical calculations for which the yield strength 

depends on pressure (Robinson and Swegle, 1987; Swegle, 1987). 

9 



3. Elastic-Plastic Modal Analyses 

One of the principal qualitative characteristics for Rayleigh-Taylor instability re¬ 

sponse in solids found numerically (Robinson and Swegle, 1987; Swegle, 1987) is the 

existence of a boundary in amplitude-wavelength space separating solutions which be¬ 

come unbounded (unstable) from those which oscillate and remain bounded (stable). 
This boundary is strongly dependent on wavelength in the sense that for large enough 

wavelengths all initial amplitudes are unstable. For wavelengths smaller than a certain 

cutoff wavelength only sufficiently small initial amplitudes will be stable. These char¬ 

acteristics cannot be obtained by any of the modeling equations discussed so far. A 

combined analysis wherein both the elastic shear modulus and the yield strength play a 

part is required. Three different approaches to this type of unified theory are discussed 

below. 

The first approach (labeled E-P-I) is similar to the work of White (1973) but in the 

end results in a a simpler and more consistent analysis. White showed how one could 

solve the Prandtl-Reuss stress rate equation for S • D exactly, assuming that the flow 

was on the yield surface. His analysis was inconsistent in that it did not allow for a 

purely elastic response in the stress power integration and made ad hoc assumptions 

about the appropriate region of integration for the stress power integral. We point 

out how different assumptions about the initial deviatoric stress affect the analysis and 

choose an assumption which appears to be the most advantageous. The second theory 

(E-P-II) takes a finite element approach to a representation of the deviatoric stress to 

derive a coupled set of equations for the perturbation growth and a stress parameter s. 

The theory takes into account regions of elastic and plastic response, but must allow 

for plastic deviatoric stress states which violate the von-Mises yield criterion in order to 

carry out the analysis. This theory was first presented by Robinson and Swegle (1987). 
A final theory (E-P-III) attempts to combine the best features of E-P-I and E-P-II 
so that a properly consistent account of elastic and plastic regions is made without 

sacrificing the standard definition of the yield criterion as is done with both E-P-I and 

E-P-II. However, E-P-III is weak in the sense that bookkeeping difficulties preclude a 

fully consistent solution for stable solution trajectories. 

The small amplitude assumption which we have employed for the stress power 

integral has been clear when the deviatoric stress is proportional to the strain or strain 

rate as in the sample calculations of Section 2.1. The result is that the stress power 

integral can be computed over the undeformed configuration without regard to surface 

variation. In Section 2.2 we implicitly used this same assumption, and we shall continue 

to do so. This is acceptable since we are interested in time scales given by if^^gk and 

we may employ the small amplitude balance q/h ~ s-i/po -C 1 such as discussed in the 

introduction. However, Gkq/Si is not assumed to be small. 

10 



3.1 E-P-I 

White (1973) assumed that all material in the plate would be on the yield surface 

and stay on the yield surface so that Equations 12 and 13 would hold throughout the 

flow. We rederive his results in our notation and make a few additional comments and 

extensions. Taking the inner product of Equation 12 with M and defining 

x = S.M/(25ic) (25) 

= {(txs - ^/(Zsi)) cos kx - (t^/si) sin kx (26) 

= ai cos kx + c; sin kx (27) 

and 

r, = 2Gkq/si, (28) 

one obtains 

dx 9 . , 

— + c£2 = c 
. 

(29) 
drj 

This is a Ricatti equation which may be solved by standard techniques to yield 

x = 

taiih[c(T? - T?o)] + a:(t?o) 

1 -r z(r?o) tanh[c(r? — r?o)] 

where T]Q = 2Gkq(0)/Si. Now by the Cauchy-Schwarz inequality and the yield con¬ 

dition, j S -M |^[ S |j M \<_ (v/2si)(v/2c) = 2sic so that | x[r)o} \< 1. The small 

amplitude assumption we have employed implies that we may neglect surface varia¬ 

tions in the stress power integral of Equation 9. Therefore, we may perform either the 
x or the y integration first in the evaluation of the double integral. Assuming that the 

a, are independent of y and integrating with respect to y, we obtain 

/% n//,, - /"'p- j^5^^ - T?") +tanh-l(a•(T?o))1 
/ & • Ddy = / 2sikqc————————.——-—^——rdy (31) 
Jo JQ cosh[c(r? - T?o) + tanh (a:(»)o))] 

= 

2S^ 
ip { cosh[(r? - 770) + tanh•l(^(77o))] } 

{rj-rio} "tcoshle-^^-^+tanh-1^^))]! 
" ( ' 

11 



The integration with respect to x depends on the assumed form of x{r]o) and explicit 

assumptions about the form of z(»?o) must be made. If the a, are assumed independent 

of x then by expanding the cosh functions, simplifying and using classical results from 

complex variable theory, we can integrate Equation 33 over a full wavelength and 

substitute in Equation 9 to obtain 

~^-^=-^-^-e-^} 
x 

i 
f cosh(r? - r?o) + 0~^ (1 - a?} sinh^r? - r?o) \ 

log < —————————————, „ ==} (33) 
[cosl^e-^r? - r7o)) + ^1 + (1 - a2) smb^e-*^ -r?o)) j 

where a = a\ + oj. 

White proposed the initial condition £(r?o) = oicosfca; so that a; == 0. He noted, 

however, that this assumption is not always consistent with a positive stress power as 

can be seen by evaluating Equation 31 for small values of the argument rj — rjo. We 

now look at two limiting cases of Equation 34. For small rj — r]o, Equation 34 yields 

-q 
- gkq = -2(2 - a^Gk^q - q(0))/p . 

(34) 

White claimed that integration over only a half wavelength (so that the leading coeffi¬ 

cient on the right hand side of Equation 35 would be replaced by unity) would match 

the small amplitude results of Miles if Ci = v/3/2 which corresponds to Miles' assump¬ 

tions on the initial stress state. This claim does not appear to be correct. In the case of 

large r? — r)o. Equation 34 leads directly to Equation 2 so that the rigid-plastic response 

equation is obtained. 

In the incompressible plane strain approximation, it would seem in general to be 

more appropriate to assume either zero initial deviatoric stress, or a deviatoric stress 

which is consistent with the assumed strains. In the case of zero initial deviatoric stress, 

a=0 and Equation 34 becomes 

, 4sik\ cosh(T? - 7?o) ^ , 

q -^ = 

~p[r, - r,o)(l - e——) 
log 

tcosh(e-(, - ,o)) J • 
(35) 

Equation 36 is the result we call E-P-I and was not discussed by W^hite. Examination of 

the properties of the equation leads to the conclusion that it may be a good candidate for 

a full elastic-plastic theory. If we consider motions for which g(0) = 0, and look at small 
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T} , then Equation 34 with a = 0 becomes the exact elastic stability equation in the long 

wavelength limit (Equation 21). For large T] one obtains Miles' rigid-plastic Equation 

2. The question immediately arises as to why we get the correct small amplitude 

response when the derivation assumed that the flow would be on the yield surface. The 

explanation is that the x2 term in Equation 29 does not enter at leading order for the 

initial condition ;c(r?o) = 0 so that a small T] — r)o expansion gives essentially an elastic 

response equation at leading order. Despite its origins, Equation 35 thus appears to be 

a good candidate for an approximate global elastic-plastic stability response equation 

since it has the correct limiting response in both the small amplitude elastic and large 

amplitude fully plastic regimes. 

The second alternative assumption on the initial stress state, which is consistent 

with an incompressible plane strain approximation, is to take an initial deviatoric stress 

state which is colinear with the assumed deviatoric strain yet lies on the yield surface. 

In this'case £(r?o) = 1, and from Equation 30 we see that x(r]] = 1. Integration of the 

stress power then leads to Equation 2, the rigid plastic stability equation. 

3.2 E-P-II 

The energy integral approach can be thought of in terms of a one-term Galerkin 

approximation. A natural way to handle the stress rate Equation 12 is then to assume 

a specific form for the stress deviator S, multiply the equation by an appropriate 

test function and then integrate over the appropriate volume. Following this line of 

reasoning, we assume that S = sM and use M itself as the test function. Thus we 

obtain 

/ S-MdV+f l3S-MdV=f 2GD-MdV. (36) 
Jyi Jyi Jyt 

The second integral on the left hand side need not be taken over the full volume, but 

only over those regions in which f3 is non-zero. Due to the simple form of our basis 

function, we must allow for deviatoric stress states outside the yield surface so that 

now the definition of the parameter /? of Equations 13 and 14 becomes 

GW 
0 = 

—3- provided Jz > 2s^ and W > 0 (37) 
s! 

= 0 provided Ja < 2s2 or W < 0 
. 

(38) 

Therefore, the region of y integration in the second integral is bounded by the solution 

to the equation 
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J, = 2s2 == s'M2 = 2s2c2 = 252e-2fcl' 
. 

. 

(39) 

That is, we must integrate over the region 0 < y <, min(max(0,y),/i) == y where 

y=-^iog(^)2. (40) 

Evaluating Equation 36 we obtain the equation for the evolution of s as 

.+B(.,}GW^!aK^^=2Gk, 
Jo Jo M-dydz 

(41) 

where H is the Heaviside function. It should be recognized that the second term in 

Equation 41 is formally 0(qs2). However, since s2 appears in the denominator as 

well and we consider motions for which s/s-i is bounded, we may include this term 
without loss of consistency. (We shall see that s/s-i ~ 1.55 for initial conditions of 

interest). This second term represents the only nonlinear aspect of the analysis and 

leads to the amplitude effects to be discussed later. Using the definitions for y and y 

and S = sM, we then obtain the coupled set of equations, which we call E-P-II, by 

evaluating Equations 9 and 41 

q — gkq = —2ks/p (42) 

s = 2Gkq x 
1 for s |< Si or sq < 0 

1 - ([s/si)2 - {s/Sl}-'^)/{2^ for si ^| s |^ s*and sq > 0 
(43) 

where s* = Si}/^ + ^/-y2 + 1 and '7=1— e"2^. Note that s equals zero when 5=5*. 

We may now look at various limits of the above equations in order to compare with 

the equations derived by Miles. For \s\ < 61, the nonlinear term in the stress rate 

equation is absent and thus the general solution of Equations 42 and 43 for constant g 

1C 

M 
9 

<5 1 

= Cl 

( 2k/p \ 

0 

. 
^ 

. 

+C2 

( 1 ^ 
n 

,2Gk, 

nl 
e + cs 

( 1 ^ 

—n 

,2Gk, 

14 

(44) 



where n = \jgk — 4Gk2/p and the c; are constants. For initial conditions, g(0) = 0, 
s(0) =0, the solution is 

/^ 
q 

^y 

9(0) 
n-' 

/ ^cosh^^GP/p ^ 

gfcnsinh(nf) 

, 2Ggk^(cosh{nt) - 1) ^ 

(45) 

The dominant exponentially growing terms in the above solution satisfy 

q - [gk - ———}q = 0 
P 

(46) 

which is OUT usual elastic stability equation. For 5 = s*, we have 5=0 and we obtain 

q - gkq = 

2k a* 

P 
(47) 

which may be compared with Equation 2 derived by Miles. The equivalent value of 

s* fs\ for Miles' solution and the s*/5i for the E-P-II analysis are shown in Figure 5. 

Respectively, the asymptotic limits as kh —»• oo are 2 and yl + •\/2 ^ 1.55. 

3.3 E-P-III 

The development of E-P-II in the previous section is convenient and straightforward 

in approach but is weak in the sense that the yield criteria had to be modified prior 

to integration over the test volume. It is appealing, however, because both elastic 

and plastic regions are included in the analysis and a proper self-consistent accounting 

can be made within the framework of the approximations. In contrast, the approach 
leading to E-P-I solves the equations of motion exactly, assuming the flow is on the 

yield surface everywhere, but does not precisely allow for regions of the flow where one 

should assume either an elastic or a plastic response. 

A theory which does provide a unification of the best features of the previous two 

approaches will be outlined below. We develop a very simple equation of motion which 

is properly self-consistent for unstable trajectories. However, we are unable to follow 

through with the analysis for oscillatory stable solutions due to bookkeeping difficulties 

arising when a fully consistent solution would require the creation of a multiplicity of 
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elastic and plastic regions. However, the final result is instructive and clearly shows 

the transition from elastic to plastic behavior. 

Our third technique satisfies Equations 13 and 14 precisely in the evaluation of the 

quantity S • M. Recall that we define M = D/qk and M2 = 2c2 = 2e~'tkv. Taking 
the inner product of Equation 12 with D and S, when Equation 14 holds, leads to 

differential equations for S • M and S2, respectively, which may be solved successively 

to obtain 

S . M = AGkc^q - <?(0)) (48) 

S2 == SG^k^c^q - <?(0))2 = (S • M)2^2) (49) 

where here we assume that S(0) = 0. Setting g(0) = 0 is equivalent to assuming initial 

elastic and plastic strains corresponding to motion from infinitesimal strains. 

The equation S2 = 2s\ and Equation 49 define a boundary between elastic response 
in which Equation 48 should be used in the stress power integral and plastic response in 

which another solution for S • M must be derived. To derive this solution, we multiply 
M into Equation 12, with /3 given by Equation 13, to obtain the differential equation 

d(S•M)+Gqk(S•M)2/s2=4Gqkc't (50) 
at 

with an initial condition given by the value of S • M when S2 = 2s2. From Equation 49 

this value is determined to be S • M = 2,?ic. But this constant also satisfies Equation 
50 so that S • M in the plastic region is exactly 25ic! Equation 50 is, in fact, Equation 
29 in the E-P-I analysis, but in the present case the solution can be determined by 

inspection. In contrast to E-P-I the approach taken here gives results for a consistent 

time-dependent formulation of the stress power integral in which elastic and plastic 

behaviors are exactly determined. We can evaluate the stress power integral using the 

correct amplitude dependent form of S-M for the elastic and plastic regions. Recalling 

the definition of T) in Equation 28, this computation gives the following equation valid 

for unstable trajectories (r? = i] — T)Q ^ 0 and q > 0): 

q - gkq = -2sikf(ri)/p (51) 

where 
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ff o<n <. i 

2 -^-i-^e-2^ kh 1 < i] < e fw = 
1 - e-^ 

2 

T7>e 
fch 

1 + e-^ 

(52) 

The ff < 1 limit of Equation 51 for g(0) = 0 is clearly our usual long wavelength 
stability equation. Equation 51 goes through a transition phase for i] > 1 and for 
ff > e^ becomes identically the usual rigid-plastic equation. Although we do not 

elaborate here, the restriction q > 0 can be relaxed somewhat, and the solution can 
be consistently extended for small oscillatory deviations from a constant amplitude. 

However, the bookkeeping difficulties of keeping track of elastic and plastic regions soon 

become overwhelming for large amplitude oscillations. As with the previous analyses, 

however, we can ignore the derivational inconsistency and use the above results directly 

for negative as well as positive q. Equation 51, with the restriction on q lifted, is the 

result we term E-P-III. 
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3.4 Solution Behavior 

The elastic-plastic stability equations derived in. the previous three sections can be 

integrated numerically for a variety of initial conditions and parameter choices. The 

equations of interest are Equation 35 (E-P-I), the set of coupled Equations 42 and 43 (E- 

P-II) and Equation 51 (E-P-III). For purposes of this paper, we show mainly results from 

integration of the E-P-II equations. The nominal parameter values for an aluminum 

plate and the initial conditions as implemented in the computations are q{0) = 0, 
s(0) = 0, G == 15 GPa, V = .325 GPa, p = 2700 kg/m8 and h = 2.54 mm. The value 
G has been taken to be roughly half the nominal value in order to better approximate 
the Am of the exact solution for a perfectly elastic plate (Robinson and Swegle, 1987). 
The pressure profile for the results to be presented below (excluding Figure 9) consists 

of a linear ramp over 1.4 fis to a maximum constant pressure pm- The initial amplitude 

g(0), the perturbation wavelength A and pm will be varied parametrically. 

Figure 6 represents a typical numerical solution of Equations 42 and 43. For small 

initial amplitudes, the solutions are stable and the amplitude oscillates, while for a 

large enough amplitude, the solution is clearly unstable. When the quantity 6 reaches 

the limiting value, s*, shown by the dotted line, the solution grows very quickly, while 
if 5 never reaches s*, the solution will not grow indefinitely. In other words, when 

the damping effect of the stress power term no longer increases with perturbation 

amplitude, then the perturbation tends to grow as an inertially dominated instability. 

The stress power term in each of the elastic-plastic models which we have developed acts 

in essentially the same way. A stability boundary may also exist between stable short 

wavelengths and unstable long wavelengths as indicated in Figure 7. As this boundary 
is approached from below, the oscillations increase in period and amplitude. One 

also observes that in the unstable regime there is a wavelength for which the solution 

reaches a given amplitude first, although asymptotically the shortest wavelength will 

eventually have the largest growth rate. A stability boundary in initial amplitude- 

wavelength space will be observed which depends significantly on the driving pressure 

as illustrated in Figure 8. A solution is classified as unstable if q/h reaches 1 or s = s*. 

At fairly low maximum pressures, when G/pm is not small, the stability boundary is 

insensitive to perturbation wavelength. At high maximum pressures G/pm is not large 

and the boundary is observed to be strongly dependent on wavelength. A distinct cutoff 

wavelength stability boundary behavior is expected and observed at \/h = 87rG/pm = TI" 

where pm = 120 GPa. 

The qualitative similarity between the diagrams shown here and the detailed nu¬ 

merical results of Swegle (1987) is striking. The degree of quantitative agreement is, 

however, somewhat disappointing particularly in terms of the overestimation of the am¬ 

plitude of the stability boundary. However, this is not too surprising considering the 
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nature of the approximations involved and the differences in the constitutive modeling. 

We show in Figure 9 a comparison between the experimental results of Barnes, et al. 

(1974, 1980) and the predictions of the model equations using the nominal parameters 

given above and an approximate actual profile for po as given by Swegle (1987, Figure 

19). The overprediction of the stability boundary is typical. Also, note the expected 

proportional dependence of the stability boundary on the value of the yield stress for 

small wavelengths. When G is greatly decreased, one is able to observe a dip in the 

stability boundary. This occurs since the longer wavelength perturbations which would 

have been unstable under a sustained pressure do not grow fast enough during the 

finite duration pulse to be classified as unstable. 

A comparison of the solution characteristics for the three basic approximate tech¬ 

niques is made in Figures 10 and 11 for a stable oscillatory case and an unstable case. 

All three techniques give results which are in essential agreement. Only very small vari¬ 

ations, which make no significant qualitative or quantitative difference, are observed. 
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4. Discussion 

The numerical experiments of Swegle (1987) and the elastic-plastic analytical ap¬ 

proximations discussed here are in substantial qualitative agreement. The basic point of 

agreement is that both elasticity and plasticity may play an important role in determin¬ 

ing the location of the stability-instability boundary in an initial amplitude-wavelength 

stability diagram. The major discrepancy is that the approximate modal techniques 

tend to greatly overestimate the critical amplitude relative to the numerical simula¬ 

tions. This significant quantitative error appears to be due in part to the simple form 
of the velocity field and the linearizing assumptions adopted in the analysis, but more 

importantly to the fact that the model equations do not take into account the true 

compressibility of the plate. Compressibility would allow for the development of plas¬ 

tic strains other than simple plane shear. The numerical experiments also indicate a 

substantial dependence of the response on the time variation of the driving pressure. 

This is due to the presence of pressure gradients which drive instabilities at a rate which 

varies markedly from the quasi-steady state pressure gradient assumption implicit in 

the incompressible analysis. It is felt that any more refined approximate analysis must 

include additional factors related primarily to compressibility effects. 

In many practical cases G/po is a large number and thus imposed perturbations 
which have a length scale on the order of the plate thickness will not grow unless 

a certain amplitude criterion is satisfied. Thus, in this case an initial perturbation 

amplitude stability criterion can be a useful indicator of stability. However, if the 

pressure is large enough, the stabilizing influence of the elastic shear strength will be 

lost for wavelengths on the order of the plate thickness. The only effect of the yield 

strength will then be to retard the growth of perturbations, and thus in this sense, one 

would not expect to be able to drive a coherent plate no matter how small the initial 

perturbation. 
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Figure 1: Rayleigh-Taylor instability of an elastic-plastic plate. 
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Figure 2: Phase plane for the rigid-plastic one-degree-of-freedom equation. 
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Figure 3: Growth rate comparison, between the modal approximation and the exact 

solution for a Newtonian fluid. 
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Figure 4: Growth rate comparison between the modal approximation and the exact 

solution for an elastic Huid. 
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Figure 5: Limit stress comparison between the E-P-II model and the rigid plastic model. 
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Figure 6: Amplitude 9, velocity ^ and stress variable 5 (a, b and c resp.) for \/h = 4 

and pm = 60 GPa for E-P-II with different values of initial amplitude as shown in (a). 
Dotted lines represent negative values. 
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Figure 7: Amplitude g, velocity q and stress variable 5 (a, b and c resp.) for \/h = 2 

(D), 3(A), 5(+), 6 (x), 15 (o) and 50 (o) for p^ = 60 GPa and E-P-II. Dotted lines 

represent negative values. 
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Figure 8: E-P-n unstable solutions for p^, = 10 GPa (D), 60 GPa (x) and 120 GPa 
(+). Each point represents three distinct calculations. 
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Figure 9: Comparison between E-P-II model predictions for unstable parameter points 
(D) and the data of Barnes, et al.: unstable (A) and stable (v). Also shown are 
results for G = 3 GPa (+) and Y = .1625 GPa (x). G = 15 GPa and Y = .325 GPa 
for the n points. 
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Figure 10: Amplitude q, velocity q and equivalent stress variables 5 (a, b and c resp.) 
for E-P-I (D), E-P-II (A), and E-P-III (+) where q{0) = l^m, X/h = 4, pn» = 60 GPa 
leads to an oscillatory response. Dotted lines represent negative values. 
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(a) (b) 

(c) 

Figure 11: Amplitude q, velocity q and equivalent stress variables 5 (a, b and c resp.) 
for E-P-I (D), E-P-II (A), and E-P-III (+) where g(0) = l^m, \/h = 6, pm = 60 GPa 
leads to an unstable response. Dotted lines represent negative values. 
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